新闻中心

EEPW首页 > 测试测量 > 设计应用 > 大型超精密平面度在线测量与误差补偿技术

大型超精密平面度在线测量与误差补偿技术

作者: 时间:2013-06-05 来源:网络 收藏
1 的数学模型与误差分离方法

对于,可以采用四测头电容式组合传感器装置安装在加工机床的z轴上,按一定的测量走点路径对工件表面进行测量,测量结果中迭加了两项误差:基准误差(即导轨运动副误差)和工件表面误差。因此,要精确测量工件,必须采用误差分离技术。

对平面度可以采用三或四传感器进行。其中三传感器布置方式如图1所示。传感器边距为L,这样以 L长为间隔可将被测平面分为M行N列网格,处于网格上的点即为被测量点,三传感器分别标记为(k,l)(k,l=1,2),对应第i行j列上的测量点标记为(i,j)。以传感器(l,l)的零点作为基准点。则传感器(1,2)、(2,1)的初始位置偏差分别记为)Δ12、Δ21。

图2所示为测量路线图(这里以4行4列测点为例),网格上的点为测量点,实心小圆圈表示测头,i、j表示测量的当前行和列。

图3所示为传感器采集数据示意图。这里假设测头装置为一刚体,导轨运动副作无偏摆的平动。

由图3给出的当前测量i行j列时的采集数据示意图可以得到传感器采样表达式,记传感器(k,l)(k,l=1,2)在该位置时的采样值为 zijkl,则:

2 测量误差源分析及实用误差分离方法的讨论

对于平面度形状误差的误差分离方法,可以采用递推逐次两点(TSTP)法和最小二乘逐次两点(LSSTP)法。对于大型精密、超精密平面度在线测量,则应采用混合逐次两点(HSTP)法,对于精密小平面工件,采用二维最小二乘插值逐次两点(LSISTP)法进行误差分离,

2.1测量误差源分析

逐次两点误差分离方法是以采样公式(1)为分析处理基础的,但在实际系统中,由于各种因素的影响,采样获得的传感器信息中不仅包含运动副误差和测量平面形状误差,而且还带有各种噪声信号。理论分析和实验研究情况表明,影响采样数据的误差源很多,如漂移误差、随机噪声误差、采样量化误差、摆角误差、各种低频振动、导轨运动不平稳等。对于大型 CNC超精密平面磨床而言,影响在线测量系统精度的因素主要有以下,几项:漂移误差、随机噪声误差、传感器电源及导轨气源波动、机床振动。

由于环境条件等的缓慢变化引起传感器中频漂移,尤其对于大工件测量时所需时间较长,漂移误差的影响更大。但理论研究及分析表明:若传感器漂移曲线相同,则漂移误差影响可以通过分离处理消除,这样在设计制作传感器时尽量保证传感器的特性相近,则环境变化对传感器的影响基本相同,漂移误差的影响得到抑制。

在线测量的环境不能算太好,采样测量中不可避免存在各种各样的干扰,‘如振动、电磁干扰、导轨运动的不平稳、传感器电路不稳定等等,都会使得采样值中存在随机噪声误差。通过几种算法处理过程可以发现:采用最小二乘处理进行误差分离的办法可以减少随机噪声的影响。

传感器电源纹波、导轨气源波动和机床振动都会对传感器采样值产生影响,因此需要分别采取措施减少影响。另一方面,由于其作用对几个传感器是相同的,因此误差分离处理时,它们只影响导轨分离精度,而对工件表面分离结果没有影响。

2.2 实用误差分离方法的讨论

对于平面度形状误差在线测量,可以采用TSTP法、LSSTP法、HSTP法、ILSSTP法等。其中TSTP法具有处理过程简单、速度快的特点,但该方法的分离结果容易积累测量噪声误差,特别是大型工件在线测量的场合,分离精度较低:LSSTP法则可以抑制随机噪声的影响,得到更高精度的测量结果,该方法将多项误差通过一次处理得到,这样可能因为误差均化而导致分离结果不准确。对于大型平面测量,由于处理矩阵太大而使得算法实现非常困难且可能导致浮点运算误差。HSTP法实现了单项误差分离处理,它以TSTP方法得到的结果作为初始值通过共轭梯度法迭代逼近可以实现大型平面快速精确的误差分离。该方法避免了LSSTP方法可能产生的误差均化及浮点运算误差p大型超精密平面度测量采用该方法最为合适。这三种方法的测量间隔等于测头间距而不能变更,这样对于中小型平面测量会导致测量结果不够精确。ILSSTP法可以实现以小于测头间距的间隔进行测量并抑制随机噪声的影响,当测量点较多时也可以采用共轭梯度迭代逼近的办法得到精确的分离结果。作为ILSSTP法的特例,对于直线度在线测量同样可以通过最小二乘处理得到高精度分离结果。

3 平面度评价方法

目前对平面度的评估主要有四种方法:方格法、对角线法、最小二乘法和最小包容区域法。前两种方法处理比较简单,在工程现场上应用较多,但其结果存在偏差。最小二乘法也是一种简单快捷的近似评估方法,易于计算机编程实现,其评估结果误差相对较小。最小区域法符合国标规定的最小条件原则,其评估结果唯一且比前几种方法都精确,故而最受重视,其实现相对较为复杂,很多学者采用了各种不同算法来实现该方法。在进行最小区域法实现时,各种文献提供了数十种求解算法,常用的有基面旋转法、坐标变换法、优化法、特征点法和作图法等,这些算法都有各自的优点。但对于大型超精平面测量处理而言,数据点太多。对如此多的数据点进行反复处理,前面提供的算法效率都太低,处理时间太长。针对这种情况,我们提出了一种对数据预处理的计算机算法,大大提高了处理效率。

算法的主要思路是通过优化搜索序列、通过置换法寻找特征点、用判别准则进行验证、再循环搜索、直到得到满足条件的特征点为止。为提高搜索速度,综合几种方法的优点,采取了最小二乘预处理、分组设定优先顺序、选定搜索方向等多条优化措施。
电容传感器相关文章:电容传感器原理

上一页 1 2 下一页

评论


技术专区

关闭