关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于NiosII的光栅细分电路系统设计

基于NiosII的光栅细分电路系统设计

作者: 时间:2010-06-25 来源:网络 收藏

3.2 光电转换及前置放大
光电二极管的光电流一般为μA级别,而放大中反馈电阻一般采用MΩ量级的电阻。因此,运放的输入偏置电流的影响不能忽略,要选用输入偏置电流小的FET输入型运算放大器。本文选用TI公司的4路LinCMOS运放TLC279CN。它具有输入失调电压低、输入电阻高、噪声低的特点,25°时的典型输入偏置电流为60 pA,远小于光电二极管的光电流。光电二极管可以工作在零偏置或反向偏置方式。在反向偏置方式下,光电二极管可以实现较高的切换速度;但要以牺牲线性为代价,并且在无光条件下仍有很小的电流,称为“暗电流”。零偏置受暗电流的影响较小,对于微小照度,可以保持照度与输出成线性比例关系。

本文引用地址://www.cghlg.com/article/163018.htm


图3采用反向并接光电二级管的方式。该方式可以有效地削弱直流电平和偶次谐波。由于后端插值芯片单端输入时对输入信号直流电平和峰峰值有限制,因此在正相输入端设置可变电阻调节输出的直流电平至2.5 V,同时通过调节反馈电阻使输出电压的峰峰值为1 V。
3.3 低通滤波器的
由于目前的移动速度多在120 m/min,最大不超过600 m/min,且栅距为20μm时输出的正交信号的频率不超过500 kHz。因此,选定低通滤波器的截止频率为fc=500 kHz,通带增益K=1。具体电路如图4所示。


3.4 差值电路的实现
IC―NV是IC―HAUS公司的单片A/D转换芯片,能够对输入的sinθ/COSθ信号进行插值,从而输出增量的正交编码信号。IC―NV芯片的内部结构及外围电路如图5所示。其内部集成了高速的比较器和毛刺滤波器,以保证信号的高速转换和完整性;输入/输出引脚具有ESD防护,且与TTL、CMOS电平兼容,接口简单可靠。


sinθ/cosθ信号首先进入芯片内部的前置仪表放大器。其增益取决于输入信号的电平及SG0、SGl引脚的状态。通过将SGO、SGl置为高、低电平或开路来选择不同的增益值,以适应峰峰值为20 mV~1.3 V的差分信号输入(单端信号峰峰值可达2.6 V)。本中,sinθ和cosθ信号使用单端输入方式,峰峰值为2 V,直流偏置为2.5V。因此在使用时需将NS和NC引脚与VREF(2.5 V)相连,以消除直流偏置。
前置仪表放大器输出的信号经过高速转换核心和转换间距控制单元后进入后端信号处理单元。该单元根据不同的插值因子(Interpolat-ion Factor,IPF)输出相应的方波信号。9种不同的插值因子可以通过SF0和SFl引脚来配置,最高可以实现每个输入信号周期的64倍

4 信号处理电路的FPGA实现
4.1 NioslI处理器及其硬件平台
NioslI处理器是A1tera公司在2004年推出的第二代软核CPU。软核处理器哈佛总线结构,采用32位RISC单周期指令集、32位数据总线及流水线技术,支持32个外部中断和可配置的MMU/MPU。有3个型号:e型、s型、f型。它们分别是针对不同应用要求优化的:e型的面积最小,只需550个LE(逻辑单元);f型的性能最高,最大性能可达200DMIPs以上;s型又叫标准型,其面积与性能介于e型与f型之间。
处理器通过AvaIon总线与外设进行连接。Avalon接口规范定义了主端口和从端口所需的信号和时序。它能以最少的逻辑资源来实现数据总线复用、地址译码、等待周期产生、地址对齐、中断优先级产生及仲裁等操作。用户可以根据主从端口的规范在SOPC Builder中创建各种自定义组件,并挂到Avalon总线上。NiosII处理器支持多达256条用户定制指令,极大地提高了软件的执行效率。这些优势使得NiosII成为可裁剪、可调整、可扩展的,更使其成为软硬件紧密融合的系统。
系统中选用CycloneII系列的FPGA EP2C5Q208,并且扩展了64 Mb SDRAM HY57 V641620和16 Mb Flash AMD29LVl60来构建NiosII系统。 EP2C5系列FPGA内部拥有4 608个Le和119 808位的RAM,并提供2个PLL和158个用户引脚,完全能够满足本系统的需求。系统选用主动串行配置芯片EPCS1,该非易失性芯片具有1 Mb的内部容量,远大于EP2C5Q208所支持的最大配置文件的大小。当系统上电时,EPCS就可将配置数据重载到FPGA的配置RAM中。
4.2 二次辨向组件设计
二次辨向组件的设计包括组件逻辑的硬件描述文件和软件文件的设计。其中,硬件描述文件由任务逻辑模块、寄存器描述模块和Avalon接口模块组成。软件文件由HAL驱动文件的源文件(my_avalon-quadrature.c)、头文件(my_avalon_quadrature.h)和寄存器访问的头文件(my_avalon_quadrature_regs.h)组成。这些文件的组织结构如图6所示。


使用SOPC Builder中的Component Editor工具添加相应的硬件描述文件、信号接口和软件文件,便可以方便地将用户自定义组件集成到系统元件库中去。为了实现NiosII处理器与自定义组件之间交换数据,首先需要定义一组寄存器,并对寄存器进行地址分配,同时根据Aval-on总线的时序对寄存器进行存取操作。本组件中定义的脉冲计数寄存器Countnum_reg[31:0]和方向寄存器Dir_reg均为只读寄存器,且相对地址分别为O和1。

DIY机械键盘相关社区:机械键盘DIY




评论


相关推荐

技术专区

关闭