关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 智能传感器信号处理的需求分析

智能传感器信号处理的需求分析

作者: 时间:2012-03-21 来源:网络 收藏

累加器宽度为40位(而非32位)时,可以将数据暂时「溢出」(这在累加器中累加大量值时经常发生)。此外,DSC的中央处理器也可以选用一种称为「饱和」的机制,将值保持在允许的范围内,并在将值写回RAM时对值进行取整或换算。DSC的另一项特性(也是微控制器一般缺少的)是其解读分数形式的数据的能力,DSC并不总是假定数据为整数,因而有助于分数运算。

除上述特性外,还增加各种数据寻址模式,用以高效移动数据,支持环形缓冲区和位反转寻址,以及零耗循环(Zero Overhead Loop)。很显然地,DSC提供了非常强大的使用者友善型中央处理器架构来处理或数据。

灵活的中断结构

DSC设备的中断结构拥有极高的灵活性。一般来说,支持大量可单独允许并设置优先级的中断源和向量,这对涉及多个的应用非常有利。其中断延迟应该具有高确定性,以简化系统开发人员的工作。显著提高讯号处理应用效率的另一个特性是,直接内存存取(Direct Memory Access, DMA),其在周边和内存之间(如在ADC和数据缓冲区间)自动传输大批量的数据。

运行时自我烧录(RTSP)

大多数传感器应用都须要储存常数,其用于根据环境条件、变换器输出与预测量之间的偏差量,来校准从传感器获取的资料。后制算法也会使用常数,如滤波系数或快速傅立叶转换旋转因子。但是,在RAM中储存此类常数会浪费数据储存空间。

DSC设备通常包含闪存(Flash Memory)程序内存和基于闪存的数据电子式可清除程序化只读存储器(EEPROM),可用于高效可靠地储存和存取此类常数。在闪存DSC设备中,使用者的程序甚至可以实时修改这些常数,具体取决于环境、资料或工作条件的变化。

实体电路串行烧录

借助闪存DSC,使用者能够使用称为实体电路串行烧录(In-Circuit Serial Programming, ICSP)的方法在现场轻松升级应用韧体。实体电路串行烧录,不仅可以修正传感器校准或软件漏洞,以最少的成本和最短的延迟提供更强的功能,而且能够使同一控制器用在不同类型的传感器接口中及不同的条件下。

高解析ADC和DAC

传感器一般用于测量温度、压力和光等物理特性。因此,须要使用速度和分辨率足够高的内建ADC,才能测量输入量的微小且快速的变化。对于大多数系统而言,输入分辨率低于12位的ADC可能不够用,非线性误差大于一个最低有效位的ADC也不行。

此外,为测量不同类型参数而采用多种传感器的任何应用,都要求ADC支持多种采样、转换和触发选项。DSC通常包含多个模拟输入频道(因而能够与多个变换器相连接)、灵活的采样/转换选项(如自动在多个输入之间切换以实现连续采样),以及测量差动输入的功能等。为了减少读取转换后的采样所产生的开销,DSC提供了数据格式可配置(例如整数/分数或有符号/无符号)的大内存映像ADC缓冲区。

内建数字模拟转换器(DAC)模块将数字数据(通常来自对传感器数据的实时)转换成可用于驱动外接设备(如制动器)的模拟讯号。尤其是在DAC支持如16位高分辨率的情况下,DAC输出可以被送入扬声器,用于播放语音形式的系统使用说明或系统状态。

高速输入捕捉和输出比较

在某些传感器应用中,控制器可能会仅为了响应特定事件而读取来自传感器变换器的输入。为了尽可能地降低功耗,控制器可能须要在检测到某种脉冲或讯号前保持休眠状态。DSC具有低功耗工作模式,在该模式下只有内部低功耗振荡器处于活动状态。此后,可透过「输入捕捉」接脚上的控制脉冲或事

件唤醒DSC,此时会触发资料收集或计算。「输入捕捉」频道还可用于获取特定事件的时间戳记。

DSC设备上除了有「输入捕捉」频道外,还有多个「输出比较」频道。「输出比较」模块基本上用于从通用内建定时器触发输出接脚状态转换来产生所需波形,其通常具有脉冲宽度调变(Pulse Width Modulation, PWM)功能。

「输出比较」讯号在传感器应用中有很多用途。例如,PWM讯号可用于基本的电机控制。语音录音通常以压缩形式储存在内建闪存中并实时进行解压缩,其可以转换成PWM波形的工作周期,然后透过外接低通滤波器电路,从扬声器播放出来。

I/O位准变化通知功能

在许多情况下,传感器应用中的控制器可能需要根据某些通用I/O接脚的状态变化来切换工作模式或产生警报。DSC可以透过产生中断快速响应此状态变化。

通讯周边不可或缺

由于基于传感器的系统的空间分布越来越广,数量越来越多,控制器须要透过某种通讯总线或网络进行数据通讯。

在一些应用中,为了记录或以图表显示从传感器获取的资料,控制器可能必须透过标准协议如RS-232和RS485发送数据到个人计算机(PC)或逻辑器。控制器偶尔也可能选择使用外接调制解调器透过电话线发送数据。

为此,DSC芯片提供16位可寻址通用异步收发器(UART)接口。在某些情况下,甚至可能在处理器内的软件中实现调制解调器通讯协议--分时多任务(Time-Division-Multiplexed, TDM)串行通讯接口或转码器接口有利于与调制解调器前端芯片组的通讯。

另一方面,某些周边使用I2C协议进行通讯。例如,凭借I2C,DSC可以使用外接串行EEPROM来储存和存取HTML网页,以直观监测和控制传感器次系统的运行。在基于因特网的系统中,应用软件中可能须要包含低成本的TCP/IP软件协议,并且可以使用透过16位串行周边接口(SPI)与DSC进行通讯的以太网络收发器芯片实现透过以太网络连接的通讯。

DSC的内建SPI频道还有其它常见用途。例如,可能须要使用外接数字电位计或可程序化增益放大器,来动态调节一个或多个传感器的增益。位置互相靠近的不同传感器次系统间,可能经常需要同时开展通讯。为了应对这种情况,DSC设备通常包含一个或多个16位SPI。

讨论通讯接口和周边时,若不提及功能稳健且灵活的控制局域网络(Controller Area Network, CAN)协议,那么该讨论肯定不完整。CAN协议是汽车应用(工业和医疗应用中也越来越多)中网络次系统的事实标准,也是其它应用领域中的一种新兴技术。

请注意,这些应用领域中广泛采用传感器讯号处理次系统。包含多个内建CAN通讯接口的DSC设备,尤其是带有支持数据过滤和缓冲的精密硬件的DSC设备,非常适用于网络传感器处理。

感测实例应用说明

接着说明几个基于传感器的系统的范例,在这些范例中,DSC提供理想的架构解决方案。这里并未逐一罗列所有的情况,仅为说明DSC在传感器应用中应用广泛而已。

温度量测运算 DSC效益显著

在传感器测量的各种物理量中,温度测量可能最为常见。在工业设备、化工厂、暖气、通风与空调(Ventilation and Air Conditioning, HVAC)系统、计算机安装和电池管理系统等众多系统中,温度测量是极其重要的一个方面。若要根据所测量的电阻准确计算温度如使用电阻式温度检测器或热敏电阻,须要进行对数计算和除法,在此过程中,DSC的DSP功能将非常有效。在某些配置中,须要差动ADC输入。

将热电偶用作温度传感器时,所产生的电压很小,因而容易受到寄生结效应的干扰。在使用P-N结(硅)传感器的情况下,所产生的电压将随设备的不同而有所变化,难以进行准确的测量。不管是哪一种情况,在内建数据EEPROM或闪存程序内存上储存和存取校准常数的功能,都有助于补偿这种不需要的效应。

类似地,须要对热电偶和红外线(IR)温度检测器所产生的非线性输出进行数学运算,使其线性化。例如,K型热电偶使用下列线性化多项式:
温度=a1×V+a2×V2+a3×V3+…
其中,a1=25132.785,a2=-60883.423…,V =传感器输出电压。



评论


相关推荐

技术专区

关闭