新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 基于FPGA的超高频读写器设计

基于FPGA的超高频读写器设计

作者: 时间:2011-04-14 来源:网络 收藏

2.3 的防冲突
RFID系统中,多标签引起的冲突是影响系统效率的难题,传统的概率性防冲突算法采用的是帧时隙Aloha算法或动态帧时隙Aloha算法等。但这些算法都存在系统识别效率不高等问题。当标签数远大于帧时隙数时,发生碰撞的时隙数增多,不能完成标签的读取:当标签数远小于帧时隙数时,空闲时隙增多而导致时隙浪费,这些都是导致系统效率不高的根本原因。鉴于以上的弊端,本文提出了一种帧时隙Aloha的改进型算法,核心思想是将标签识别分为两个步骤,即冲突检测和数据读取。其中冲突检测是为了检测一个识别周期中的标签发生冲突的情况。数据读取是根据冲突检测的情况,允许无冲突的标签和阅读器完成通信。

本文引用地址://www.cghlg.com/article/156402.htm

a.JPG


通常,在帧时隙Aloha算法中,当系统标签数量变得很大时,系统效率就开始下降。当设置帧的长度(包含的时隙数)为Nt,响应的标签数为n时,则有r个标签选择同一个应答时隙的概率服从二项分布:
f.JPG
因此,当r=1时表示标签选择无碰时隙的概率。在一个周期中预期成功读取的标签数
g.JPG
系统效率的计算公式如下:
系统效率=一个周期中预期读取的标签数/当前的帧的长度=N/N,
从上式中可以计算出系统效率的最大值的位置h.JPG。从而可以推导出,当帧的长度为Nt时,效率最高的标签响应数为:
i.JPG
从上式可以得出,当标签数和帧时隙长度大体相当时,系统效率将变得最大。与图5所示一致。

b.JPG


为使系统效率最高,必须使帧时隙数等于参与循环的标签数。每帧时隙数可以根据标签数的变化及时调整,使得标签数量与帧时隙数匹配。在开始一个新的循环时,读写器要对参与循环的标签数进行估计,如果所估计的标签数与实际情况相差甚远,那么算法的效率就会发生大幅的下降。通过对上一个周期通信所获取的空的时隙数、发生碰撞的时隙数和只有一个标签传输数据的时隙数来估计标签的数量,由估计的标签的数量来及时调整下一帧的长度。由于当外围标签数量与帧时隙数偏离较大时,系统效率会急剧下降,所以通过帧时隙改进型算法能够把系统的效率控制在34.6%~36.8%范围内,从而大幅提高了系统的识别效率。在实际的RFID系统中,被正确识别的标签将不再响应读写器发送的数据传输请求,同样,成功传输数据的标签也不再响应读写器的请求。因此前一帧中没有被识别的标签数为N=2.93c。其中c表示发生碰撞的时隙数。通过对未识别的标签数进行估计,选择最佳的帧时隙长度,从而使每个循环周期中响应标签数与帧时隙数相匹配,从而大幅度提高了系统的效率。

3 总结
本文选用芯片与AS3990射频收发芯片并实现了远距离UHF RFID读写器,标签识别距离达到3~4m,已基本满足应用要求。并提出了一种帧时隙Aloha防碰撞的改进型算法。通过动态地调整帧时隙数与外围标签数相匹配,使读写器系统的读取效率维持在34.6%~36.8%范围内,大幅度提高了系统的读取效率。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭